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Abstract. The analysis of intermittent data is improved. It is proven that the standard method of recov-
ering the history of a particle cascade generally does not reproduce the structure of the true cascade. The
recovering corrections to the standard method are proposed and tested in the framework of multiplica-
tive cascading models.

1 Introduction

The first data on possible intermittent behaviour in multi-
particle production [1] came from the analysis of the single
event of high multiplicity recorded by the JACEE Collab-
oration [2]. Data from later accelerator experiments [3]
confirmed that there are large dynamical fluctuations ap-
pearing in the high-energy multiparticle final states that
manifest a scaling behaviour. Many different models have
been proposed since to explain the effect [4]. Some of them
suggest that an underlying final-state multiparticle cas-
cade may be responsible for the scaling of multiparticle
moments [4]. In this approach, the intermittent data rep-
resent the last stage of the cascade, and the main prob-
lem lies in the extraction of the information on previous
cascading stages, which is in some way encoded in the
last-stage data. It should be stressed that the problem of
recovering the history of the cascade may not be solvable
if addressed generally. However, the self-similar processes
which are assumed to underlie the final-state structure
obey some scaling law. This makes many features of local
dynamics disappear, and one may expect to extract from
the last-stage data at least a part of information on the
real cascade parameters.

The method of recovering the history of the cascade
from the last-stage data was proposed and applied origi-
nally to the JACEE event data. Since that time has be-
come a standard tool of multiparticle data analysis [4],
especially in the event-by-event analysis [5].

In this paper, we would like to improve the standard
method of analyzing the intermittent data, taking into
account corrections due to recovering the history of the
particle cascade in the framework of multiplicative ran-
dom cascading models [6,7]. This problem has already
been addressed and analyzed in part in [8]. Our discussion
will proceed as follows. In Sect. 2, we characterize briefly
the standard method of estimation of intermittency expo-
nents, and introduce the definition of recovering correc-
tions. In Sect. 3, the definition of multiplicative models is

presented, and the special cases of multiplicative models,
α, p, and (p + α), are summarized. In Sect. 4 the recur-
sive equation for recovering corrections in a multiparticle
model with possible neighbour-node memory is derived.
Section 5 is devoted to the implementation of recovering
corrections into the analysis of data. The implementation
algorithm is proposed and numerically tested. Finally, in
Sect. 6 we present our conclusions.

2 Standard estimation of intermittency
exponents and recovering corrections

Consider a sample of M bins describing an individual (in-
termittent) event. For simplicity, we assume that M = 2n,
where n is a natural number. We thus have 2n numbers
describing the content of each bin:

x
(n)
i , i = 0, 1, . . . , 2n − 1 (1)

which represent, e.g., the distribution of particle density
into bins. One assumes that the bin ensemble has been
generated in some cascading process, and that the un-
normalized density moments z

(n)
q for this process,

z(n)
q =

1
2n

2n−1∑
i=0

(
x

(n)
i

)q

, (2)

manifest a scaling behaviour parametrized by intermit-
tency exponents φq:

z(n)
q ∼ 2n×φq . (3)

The standard method of estimation of intermittency
exponents was introduced first for the analysis of JACEE
events [2]. The method recovered the history of the cas-
cade in the following manner: it established the value of
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density moments for each cascade step, and made the lin-
ear χ2 fit to the points (k, log z

(k)
q ) (k = 1, . . . , n, log x ≡

log2x):
log z(k)

q = k × φ′
q + b. (4)

In this way, the eventual long-range correlations could be
separated and would not contribute to the estimated slope
φq. For the assumed bin-into-two-bins splitting scheme,
the true value of the x

(n−k)
i bin content was replaced by

y
(n−k)
i :

y
(n−k)
i =

1
2k

2k−1∑
j=0

x
(n)
2k×i+j

. (5)

The intermittency exponents were extracted from the re-
constructed moments
z
(k)
q; rec.:

z(k)
q; rec. =

1
2k

2k−1∑
j=0

(
y
(k)
j

)q

, (6)

assuming their power-law behaviour:

z(k)
q; rec. ∼ 2k×φ′

q . (7)

So far (see, e.g., [10]) the value of (normalized) φq has been
estimated simply with the assumption that φq;norm. = φ′

q

(φq; norm. := φq − qφ1).
There is, however, an open question of how the cascade

recovered from data refers to the true cascade which gener-
ated the data. For the purpose of estimating the intermit-
tency exponents, it is enough to ask about the relation be-
tween the true density moments zq and the reconstructed
ones obtained from (6). It is obvious that formula (5) loses
a piece of information on the primary cascade. We give a
simple example to illustrate the problem. If we assume
that the underlying cascading process preserves, e.g., the
total particle density

∑2k−1
j=0 x

(k)
j = 1 (k = 1, . . . , n), then

it follows from (6) that the reconstructed cascade will not
manifest this property:

∑2k−1
j=0 y

(k)
j 6= 1. This means that

the standard method does not recover the conservation
law present in the true cascade.

Moreover, it was found explicitly for the α model [6,7]
(which does not preserve the total particle density) that
there exists always a discrepancy between the true value
of φq and its estimation φ′

q (7), due to the recovering tech-
nique (5). This problem is discussed in detail in [11].

We may express the discrepancy between the true and
the reconstructed moments at the (n − k)th cascade step
in a following way:

z(n−k)
q; rec. = z(n−k)

q × pq(k), (8)

where the factor pq(k) denotes the corrections due to re-
covering procedure (5); we will call them recovering cor-
rections. Corrections pq(k) contain information on the pa-
rameters of a specific process that has generated the true
cascade. It is obvious that they depend also on the cascade
step. Substituting (8) into (4), one arrives at the relation:

log z(n−k)
q; rec. − log(pq(k)) = (n − k) × φq; corr. + b, (9)

where the fitted slope φq; corr. estimates the true intermit-
tency exponent φq.

In this paper, we confine ourselves to recovering cor-
rections considered for the class of multiplicative random
cascading models. For the multiplicative cascade (“multi-
plicative” means that at each cascade step, the bin content
is multiplied by a number to generate the bin content at
the next cascade step) relation (8) holds explicitly, and
recovering corrections take the form [11] (for proof, see
Appendix A):

pq(k) =

〈 1
2k

2k−1∑
i=0

x
(k)
i




q〉
(10)

where the average 〈. . .〉 is taken over the (eventual) ran-
dom choices while generating the cascade. The starting
bin x

(0)
0 is set equal to 1. It is worth noticing that pq(k)

may be also expressed in terms of the erraticity moments
[9]:

pq(k) = C1 , q. (11)

3 Multiplicative models

As already mentioned, in this paper we restrict ourselves
to the class of multiplicative random cascading processes
with possible neighbour-node memory, and generate the
uniform distribution of particle density. The commonly
used models of random cascading, the α model [12] and p
model [13], belong to this class. For the purpose of testing
our predictions for recovering corrections, we introduce
below a new, many-parameter (p + α) model.

In the multiplicative random cascading processes with
possible neighbour-node memory, we assume for simplicity
the root of a cascade to be equal to 1: x

(0)
0 = 1. One

generates the next stages of the cascade recursively. The
scheme is the following. The two bins x

(k+1)
2i and x

(k+1)
2i+1

are obtained from x
(k)
i by multiplication,

x
(k+1)
2i := W1 × x

(k)
i ,

x
(k+1)
2i+1 := W2 × x

(k)
i , (12)

where W1 and W2 are random variables of the m model
parameters aj , j = 1, . . . , m:

W1 = aj with probability paj
,

W2 = aj with probability paj
,

(13)

with normalized probability weights paj , where

m∑
j=1

paj
= 1. (14)

The distribution of particle density will be uniform if the
following condition is fulfilled:

p(W1 = ai, W2 = aj) = p(W1 = aj , W2 = ai), (15)
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where p(W1 = ai, W2 = aj) denotes the probability of
choosing in (12) W1 = ai and W2 = aj (i, j = 1, . . . , m).
Then the density moments fulfill relation (3), where inter-
mittency exponents φq are equal to:

φq = log(aq
1pa1 + . . . + aq

mpam). (16)

The models α, p, and (p + α) may be derived from the
general multiplicative rule (12). To obtain the α model,
it is enough to assume random variables W1, W2 to be
independent:

〈W1W2〉 = 〈W1〉〈W2〉. (17)

The α model has no node memory; therefore, no conser-
vation law can be implemented here.

Relation (12) reduces to the p model after setting m = 2
and:

a2 = 1 − a1,

pa1 = pa2 = 0.5,

p(W2 = a2 | W1 = a1) = 1,
p(W2 = a1 | W1 = a2) = 1, (18)

where p(W2 = ai | W1 = aj) denotes the conditional prob-
ability of W2 = ai, if W1 = aj . The p model is an example
of a multiplicative model with the neighbour-node mem-
ory. Relation (18) implies that the sum x

(k+1)
2i + x

(k+1)
2i+1 =

x
(k)
i , and the particle density in a node is preserved.

Finally, we introduce the many-parameter (p + α)
model, using relation (12) combined with the α- and p-
model restrictions:

a2i = 1 − a2i−1,

pa2i = pa2i−1 ,

(19)

where m is an even number (i = 1, . . . , (m/2)), and:

p(W2 = a2i | W1 = a2i−1) = 1,
p(W2 = a2i−1 | W1 = a2i ) = 1. (20)

One may check that the particle distribution generated in
the (p + α) model is uniform. The (p + α) model may
involve any number of parameters ai. Therefore it de-
scribes a more realistic case of cascading, since for large
m, the distributions of particle density for W1 and W2
(13) may be approximated by a continuous distribution
function f(x): W1,2 = x with probability f(x) dx. The to-
tal particle density will be preserved for any m, according
to (20).

4 Recovering corrections
in multiplicative models

Now we calculate explicitly the correction pq(k) for any
multiplicative model with possible neighbour-node mem-
ory. To do this, we will split the bins (xi’s) appearing in

(10) into a left half (i < 2k−1) and a right half (i ≥ 2k−1)
[11]:

pq(k) =

〈(
1
2k

∑
i

li + ri

)q〉

=
1
2q

〈
q∑

j=0

(
q

j

)(
1

2k−1

∑
i

li

)j

×
(

1
2k−1

∑
i

ri

)q−j

W j
1 W q−j

2

〉
. (21)

Using the fact that the left and right bins are independent,
one arrives at the recurrence equation

pq(k) =
1
2q

q∑
j=0

(
q

j

)
pj(k−1)pq−j(k−1)〈W j

1 W q−j
2 〉 (22)

which may be solved recursively together with the initial
data:

pq(0) = 1,

p0(k) = 1. (23)

A similar recurrence relation has also been obtained in
[8]. It should be stressed that coefficients 〈W j

1 W q−j
2 〉 are

the only parameters of the model needed to solve (22)
recursively. This means that to calculate pq(k) for a given
model we need only to know the coefficients 〈W j

1 W q−j
2 〉.

In the next section, we show how to apply this observation
to the data analysis.

Finally, we present recovering corrections calculated
for the α and p models:

pα-model
q (k) =

1
2q

q∑
j=0

(
q

j

)
pj(k − 1)pq−j(k − 1)

×2φj+φq−j , (24)

pp-model
q (k) = 2φ1 qk (25)

where φj denote intermittency exponents (16).

5 Implementation of the recovering
corrections

The idea for how to implement the corrections pq(k) into
the analysis of the α-model data was sketched briefly in
[11]. Here we extend the primary scheme and apply it
to the multiplicative model data. As was mentioned in
the previous section, coefficients 〈W j

1 W q−j
2 〉 are the only

parameters of the model needed to calculate recursively
the corrections pq(k). Let us introduce a new notation for
〈W j

1 W l
2〉:

〈W j
1 W l

2〉 ≡ kj,l. (26)
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We ask now how to derive kj,q−j from the model. One
may notice that for either j = 0 or l = 0, coefficients kj,l

equal:
kj,0 = k0,j = 2φj , (27)

where φj are ordinary intermittency exponents (3) which
may be determined from relations (4), (9). To find the
value of kj,l (j, l 6= 0) we use the unnormalized density
correlators c

(k)
j,l [1,4,14]:

c
(k)
j,l =

1
2k−1

2k−1−1∑
i=0

(
x

(k)
2i

)j (
x

(k)
2i+1

)l

. (28)

In multiplicative models, the correlators and the density
moments fulfill the relation

c
(k)
j,l = z

(k−1)
j+l × kj,l, (29)

which can also be rewritten as:

log c
(k)
j,l = (k − 1)φj+l + log kj,l. (30)

Relation (29) may be easily derived from (12); since each
term in (28) originates from one node x

(k−1)
i , it can be

rewritten as:
(
x

(k)
2i

)j (
x

(k)
2i+1

)l

=
(
x

(k−1)
i

)j+l

W j
1 W l

2. Rela-

tions (29) and (30) imply that we may derive kj,l in a
straigthforward way by calculating correlators and density
moments from data, and applying to them the standard
χ2 fit.

Applying the standard method to the correlators at the
previous cascade stages, we expect to find a discrepancy
(due to the recovering procedure) between reconstructed
correlators and the true ones, similarly as was found for
the density moments. It can be proven (see Appendix B)
that this discrepancy may be expressed in terms of recov-
ering correction pq(k) (10):

c
(n−k)
j,l; rec. = c

(n−k)
j,l pj+l(k). (31)

Now we have all the tools needed for implementation of
recovering corrections in the multiplicative data analysis.
Below, we propose an implementation algorithm which re-
cursively adjusts the primary parameters φq, kj,l (j+l = q,
jl > 0) obtained after applying the standard method to
the data:

(INPUT) parameters φ1, . . . ,φq−1, kj,l (j+l = 1, . . . , q−
1), obtained after applying the implementation algorithm
for q = 1, 2, . . . , q − 1 step by step (for determination of
φ1, see Appendix C.iii).
(1) Derive φ′

q, k′
j,q−j (j = 1, . . . , q − 1) from data, using

the standard method, i.e., reconstruct the cascade using
(5) and derive the parameters from relations:

log z(k)
q; rec. = k × φ′

q + b. (32)

c
(k)
j,l; rec. = z

(k−1)
j+l; rec. × k′

j,l (33)

where k = 1, . . . , n (cf. (4), (29)).

(2) Derive φq; corr. , kj,q−j; corr. (j = 1, . . . , q − 1) in the
following substeps:

(2.0) calculate pq(k) from the relation (cf. (22))

pq(k) =
1
2q

q∑
j=0

(
q

j

)
pj(k − 1)pq−j(k − 1)kj,q−j ; (34)

using φ′
q, k′

j,q−j , derived in step (1), and estimate φq; corr.
from (cf. (9)):

log z(n−k)
q; rec. − log(pq(k)) = (n − k) × φq; corr. + b; (35)

(2.1 ) Calculate pq(k) from (34) using φq; corr. (other pa-
rameters as after step (1)), and estimate k1,q−1; corr. from
relation (cf. (30),(31), see also Appendix C):

log c
(n−k)
j,l; rec. − log(pj+l(k)) = (n − k − 1)φj+l

+ log kj,l; corr., . . . , (36)

(2.q-1) Calculate pq(k) from (34), using all previously de-
rived parameters φq; corr. , kj,q−j; corr., and estimate
kq−1,1; corr. from (36).

(3) Compare the values of φ′
q, k′

j,q−j and φq; corr.,
kj,q−j; corr. (j = 1, . . . , q − 1). If the relative difference
is large, assume:

φ′
q := φq; corr.,

k′
j,q−j := kj,q−j; corr.,

and repeat steps (2) and (3) recursively until the relative
difference between parameters before and after step (2) is
small enough. Then go to the output, assuming φq := φ′

q,
kj,q−j := k′

j,q−j .
(OUTPUT) Parameters φ1, . . . ,φq; kj,l (j+l = 1, . . . , q).

Other technical details and problems that may appear
when applying the algorithm to data are listed in Ap-
pendix C.

We have performed numerical simulations of the α, p
and (p+α) models in order to test how the implementation
algorithm works in practice. We generated 10000 cascades
of the 10-step length for the α and (p + α) models, and
one cascade of the 10-step length for the p model1 for two
different parameter sets separately.

The implementation algorithm analyzed the data of
the last cascade step. For each event it estimated the value
of normalized intermittency exponents φ2; norm., φ3; norm.

1 It can be proven that for a given parameter set, the p model
generates always the same values of the correlators and density
moments.
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Table 1. Estimation of normalized intermittency exponents φ2; norm. and
φ3; norm. and their dispersions for the α model, using the standard method
(second column), the improved method with the implementation algorithm
(third column), and dedicated α corrections (24) (fourth column), as compared
with the theoretical values (first column), performed for two sets of α-model
parameters (see Figs. 1, 2)

theor. standard algorithm α − corr.
a) φ2; norm. 0.0285 0.0251 ± 0.004 0.0246 ± 0.0033 0.0288 ± 0.004

φ3; norm. 0.0813 0.0757 ± 0.010 0.0727 ± 0.009 0.0798 ± 0.0111
b) φ2; norm. 0.322 0.264 ± 0.044 0.253 ± 0.050 0.276 ± 0.051

φ3; norm. 0.807 0.653 ± 0.105 0.666 ± 0.125 0.750 ± 0.131

Table 2. Estimation of normalized intermittency exponents
φ2; norm. and φ3; norm. and their dispersions for the (p + α)
model, using the standard method (second column) and the
improved method with the implementation algorithm (third
column), as compared with the theoretical values (first col-
umn), performed for two sets of (p+α)-model parameters (see
Figs. 3, 4)

theor. standard algorithm
a) φ2; norm. 0.333 0.322 ± 0.044 0.305 ± 0.066

φ3; norm. 0.832 0.736 ± 0.118 0.720 ± 0.174
b) φ2; norm. 0.177 0.170 ± 0.023 0.173 ± 0.029

φ3; norm. 0.478 0.438 ± 0.069 0.470 ± 0.092

(φi; norm. := φi − i × φ1), using the standard method (step
(1)) with recovering corrections included (steps (2) and
(3). The results are presented in Figs. 1, 2, 3, 4 (for the
α and (p + α) models) and in Tables 1, 2.

For the α model, the histograms of φ2; norm., φ3; norm.

obtained in the standard method and the histograms with
recovering corrections included are almost identical. In
this case, the recovering corrections can be implemented
better when one applies directly the dedicated α-model
recovering correction pα-model

q (k) (24) (see Figs. 1, 2 and
Table 1). The different accuracy of both approaches is
due to the fact that the random variables W1, W2 are in-
dependent in the αmodel, and the coefficients kj,q−j (26)
are approximated better by the product 2φj × 2φq−j than
from correlators (29).

However, the implementation algorithm works well for
the (p + α) model (see Figs. 3, 4 and Table 2). For the
(p + α) model, the histogram with the recovering cor-
rections included approximates well the theoretical value
of normalized intermittency exponent. The histogram ob-
tained by using the standard method is moved slightly to
the left in comparison to the histogram with recovering
corrections included.

We have checked that for the p model, the theoreti-
cal values of normalized intermittency exponents are es-
timated perfectly by both the standard method and and
implementation algorithm, as we have expected2.

2 It follows from relations (8), (25) that in the p model,
φi; rec. ,norm. = φi; norm. if i > 1.

It should also be mentioned that the histograms gen-
erated by both the implementation algorithm and ded-
icated recovering corrections are symmetric, in contrast
to the standard ones, and their dispersions are relatively
small (see Tables 1, 2). Finally, we notice that the accu-
racy of the estimation of intermittency exponents, while
applying the standard method and the improved one to
a given model, depends on the parameters of this model
(cf. Figs. 1, 2 and Figs. 3, 4). In Appendix D, we present
a qualitative analysis of the effect for intermittency expo-
nents of the second rank. A similar analysis has also been
done in [8].

6 Conclusions

To sum up, we have analyzed the estimation of intermit-
tency exponents from the data that were generated by
a multiplicative random cascading process. The following
methods were applied: the standard method of cascade re-
covering (5), and the improved method, which recursively
included the recovering corrections. The improved method
was applied in the form of the implementation algorithm.
Numerical simulations have been performed to check how
both methods work in practice. The conclusions may be
summarized as follows:

(a) The standard method of estimation of intermit-
tency exponents does not apply for the whole class of
multiplicative models: its accuracy depends on the specific
properties of the model and its parameters. The method
does not detect a conservation law if present in the model.

(b) The improved method of estimation of intermit-
tency exponents applied in the form of recursive imple-
mentation algorithm either corrects the standard method
estimation or does not change the standard method re-
sult. In the latter case, the estimation may be corrected
by applying the dedicated recovering corrections. In any
case, the improved method tests the applicability of the
standard method, and allows one to estimate the accuracy
of the intermittency exponent estimation.

While applying the improved method, the parameters
of the model are adjusted recursively from the primary
(standard method) parameters. The histograms generated
by the improved method are symmetric, and their disper-
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Figs. 1, 2. Estimation of normalized
intermittency exponents φ2; norm. and
φ3; norm. for the α model, using the
standard method (dotted line), the im-
proved method with the implementa-
tion algorithm (thin solid line), and
dedicated α corrections (24) (dashed
line), as compared with the theoretical
values (solid line), performed for two
sets of α-model parameters:
(a) a1 = 0.8, a2 = 1.1, p1 = 1/3
(b) a1 = 0.5, a2 = 1.5, p1 = 1/2

sions are of the same order as those determined for the
standard method. The improved method takes into ac-
count the neighbour-node memory (a conservation law),
if present in the model, by including the density correla-
tors into the estimation scheme.
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Appendix A

We prove relation (10). The density moment z
(n−k)
q; rec. may

be rewritten as:

z(n−k)
q; rec. =

1
2n−k

2n−k−1∑
i=0

(
y
(n−k)
i

)q

=
1

2n−k

2n−k−1∑
i=0


 1

2k

2k−1∑
j=0

x
(n)
2k×i+j




q

. (37)

Notice that:

x
(n)
2k×i+j

= x
(n−k)
i × x

(k)
j . (38)
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Figs. 1, 2. (continued)

Substituting (38) into (37), one arrives at

z(n−k)
q; rec. =

1
2n−k

2n−k−1∑
i=0

(
x

(n−k)
i

)q


 1

2k

2k−1∑
j=0

x
(k)
j




q

= z(n−k)
q pq(k). (39)

Appendix B

We prove relation (31). The correlator c
(n−k)
j,l; rec. may be

rewritten as:

c
(n−k)
j,l; rec. =

1
2n−k−1

2n−k−1−1∑
i=0

(
y
(n−k)
2i

)j (
y
(n−k)
2i+1

)l

=
1

2n−k−1

2n−k−1−1∑
i=0


 1

2k

2k−1∑
m=0

x
(n)
2k×2i+m




j

×


 1

2k

2k−1∑
r=0

x
(n)
2k×(2i+1)+r




l

. (40)

Relation (38) implies:

c(n−k)
q; rec. =

1
2n−k−1

2n−k−1−1∑
i=0

(
x

(n−k)
2i

)j (
x

(n−k)
2i+1

)l

×

 1

2k

2k−1∑
j=0

x
(k)
j




j+l

= c
(n−k)
j,l pj+l(k). (41)
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Figs. 3, 4. Estimation of normalized
intermittency exponents φ2; norm. and
φ3; norm. for the (p + α) model, using
the standard method (dotted line) and
the improved method with the imple-
mentation algorithm (thin solid line),
as compared with the theoretical val-
ues (solid line), performed for two sets
of (p + α)-model parameters:
(a) a2i = 1 − a2i−1, p2i = p2i−1 = 0.05
for i = 1, . . . , 10,
a1 = 0.2, a3 = 0.5, a5 = 0.6, a7 = 0.3,
a9 = 0.45,
a11 = 0.25, a13 = 0.1, a15 = 0.15,
a17 = 0.87, a19 = 0.66;
b) a2i = 1 − a2i−1, p2i = p2i−1 for
i = 1, . . . , 10,
a1 = 0.2, a3 = 0.5, a5 = 0.6, a7 = 0.3,
a9 = 0.45,
a11 = 0.25, a13 = 0.1, a15 = 0.15,
a17 = 0.87, a19 = 0.66,
2p1 = 0.05, 2p3 = 0.15, 2p5 = 0.25,
2p7 = 0.40, 2p9 = 0.05,
2p11 = 0.05, 2p13 = 0.02, 2p15 = 0.02,
2p17 = 0.005, 2p19 = 0.005

Appendix C

We list some technical details which can be useful when
applying the implementation algorithm to data, and dis-
cuss possible problems.

(i) The recovering corrections applied for calculating
φ2, φ3 read:

p1(k) = 2kφ1 (42)

p2(k) =
1
4

( p2(k − 1)k2,0 + p2(k − 1)k0,2

+2p2
1(k − 1)k1,1 ) (43)

p3(k) =
1
8

( p3(k − 1)k3,0 + p3(k − 1)k0,3

+3p1(k − 1)p2(k − 1)k1,2

+3p2(k − 1)p1(k − 1)k2,1 ) (44)

(ii) Since random variables W1, W2 generate the uni-
form distribution (cf. (15)) relations (42)–(44) may be sim-
plified by substituting:

kj,l = kl,j . (45)

The (experimental) estimation of kj,l will be better if we
determine c

(n)
j,l as:

c
(n)
j,l =

1
2n−1

2n−1−1∑
i=0

{(
x

(n)
2i

)j (
x

(n)
2i+1

)l
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Figs. 3, 4. (continued)

+
(
x

(n)
2i

)l (
x

(n)
2i+1

)j
}

. (46)

(iii) On the determination of φ1: It follows from re-
lations (8) and (42) that the unnormalized reconstructed
density moment z1; rec. for any multiplicative model takes
the form:

z
(k)
1; rec. = 2nφ1 = z

(n)
1 , (47)

which does not depend on the cascade stage k. Therefore
the proposed estimation of φ1, implied by (47) reads:

φ1 =
log z

(n)
1; rec.

n
. (48)

(iv) To estimate coefficients kj,l in step (1) of the im-
plementation algorithm, we calculate the reconstructed

correlators and density moments, and apply relation (33),
whereas in step (2), we use relation (36) to do the same.

The brief explanation of the method is following. In
formula (33), kj,l appears as a slope, and an ordinary lin-
ear χ2 fit may estimate it with a good accuracy. This
approach works well for the reconstructed correlators and
moments.

On the other hand, the long-range correlations log b,
present in relation (36), add to the value of log kj,l, and
generate a large error while estimating kj,l :=
exp(log kj,l + log b) from (36). We could try to estimate
b, assuming that:

z(n)
q = 2n×φqb. (49)
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Then it follows from (36) that:

log c
(n)
j,l = (n − 1)φj+l + log k̄j,l, (50)

and log kj,l equals:

log kj,l = log k̄j,l − log b. (51)

The latter approach does not work for the reconstructed
moments, where relations (49) and (50) apply only ap-
proximately. However, it applies quite well for the mo-
ments with recovering corrections included, because for
this case, relation (33) would require including recover-
ing corrections to both correlators and density moments,
which in turn would generate a larger error in estimating
kj,l.

It was checked that the above method works for the
multiplicative-model data. However, the problem of the
determination of coefficients kj,l and, in particular, the
problem of the determination of correlators c

(n)
j,l from the

real data is much more complicated (see, e.g., [4,14]). In
this case, the method needs some improvement which we
will not discuss here.

(v) The recursive implementation algorithm is not al-
ways convergent. Since estimation at the qth step de-
pends upon parameters which were adjusted in the pre-
vious steps 1, . . . ,q − 1, the estimation errors propagate
and get larger with growing q. Then it happens sometimes
(but not very often) that recursive adjusting ends with the
repeating of a sequence of different values of parameters,
or parameters become indefinite. In such a case, we stop
the algorithm, assuming for the values of intermittency
parameters those derived in step (1).

Appendix D

The accuracy of the estimation of intermittency expo-
nents, while applying the standard method and the im-
proved one to a given model, depends on the parameters
of this model (cf. Figs. 1, 2 and Figs. 3, 4). Below we
present a qualitative analysis of the effect for the inter-
mittency exponents of the second rank.

Equation (43) may be solved analytically, and the so-
lution (valid for any multiplicative model) takes the closed
form

p2(k) = (1 − A) × 2(φ2−1)k + A × 22kφ1 , (52)

where
A =

k1,1

22φ1+1 − 2φ2
. (53)

The reconstructed moments then read:

z
(k)
2; rec. = (1 − A) 2(φ2−1)n × 2k

+A 2φ1n × 2φ2; norm. k. (54)

There are two power-law terms: 2k and 2φ2; norm. k in
z
(k)
2; rec.. In order to establish how they influence the de-

termination of φ′
2 (4), (32) we performed the following

check. For a given multiplicative model with fixed param-
eters (e.g., α model with parameters as in Figs. 1, 2) we
established the values of z

(k)
2; rec. from (54), and made the

linear χ2 fit to the points (k, log z
(k)
2; rec.). The slope ob-

tained from the fit estimated the value of φ′
2. For the α

model, we have obtained, for case (a), φ′
2 = 0.0250, and

for case (b), φ′
2 = 0.284. Both results agree with the φ′

2
obtained from the model simulation (cf. Figs. 1,2 and Ta-
ble 1). A similar analysis can be also peformed for the
(p + α) model.

The above results confirm our observation that the ac-
curacy of the estimation of intermittency exponents from
the standard method depends on the parameters of the
model. And if the estimation of primary parameters φ′

q,
k′

j,l is more accurate, their recursive adjustment,
performed by the implementation algorithm, will be faster
and more accurate as well. This means that in this case,
the improved analysis works better as well.
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